On a Modified Szasz-Mirakjan-Operator

Heinz-Gerd Lehnhoff
Institut für Mechanik, Technische Hochschule Darmstadt, Hochschulstrasse 1, D-6100 Darmstadt, West Germany
Communicated by Oved Shisha
Received December 7, 1983

Let $C_{A}[0, \infty)$ be the set of all functions $f \in C[0, \infty)$ satisfying a growthcondition of the form $|f(t)| \leqslant A e^{m t}\left(A \in \mathbb{R}^{+}, m \in \mathbb{N}\right)$. Then for $f \in C_{A}[0, \infty)$ and $x \in[0, \infty)$ the well-known Szasz-Mirakjan-operator is defined by

$$
\begin{equation*}
S_{n}(f ; x):=e^{-n x} \sum_{k=0}^{\infty} \frac{(n x)^{k}}{k!} f\left(\frac{k}{n}\right) \tag{1}
\end{equation*}
$$

It is known (Grof [1]; Hermann [3]) that

ThEOREM 1. $\left(S_{n}\right)_{n \in \mathbb{N}}$ is a sequence of linear positive operators from $C_{A}[0, \infty)$ into $C[0, \infty)$ with the property

$$
\lim _{n \rightarrow \infty} S_{n}(f ; x)=f(x) \text { for all } f \in C_{A}[0, \infty),
$$

uniformly on every interval $\left[x_{1}, x_{2}\right], 0 \leqslant x_{1}<x_{2}<\infty$.
The actual construction of the operators S_{n} requires estimation of infinite series which in a certain sense restricts their usefulness from the computational point of view. Thus the question arises, whether $S_{n}(f ; x)$ cannot be replaced by a finite partial sum provided this will not change essentially the degree of convergence. In connection with this question Grof [2] introduced and examined the operator

$$
\begin{equation*}
S_{n, N}(f ; x):=e^{-n x} \sum_{k=0}^{N} \frac{(n x)^{k}}{k!} f\left(\frac{k}{n}\right), \tag{2}
\end{equation*}
$$

for which the following result (cf. Grof [2; p. 114]) is valid.

> Theorem 2. Let $N(n)$ be a sequence of positive integers with 278
$\lim _{n \rightarrow \infty}(N(n) / n)=\infty$. Then $\left(S_{n, N}\right)_{n \in \mathbb{N}}$ is a sequence of linear positive operators from $C_{A}[0, \infty)$ in $C[0, \infty)$ with the property

$$
\lim _{n \rightarrow \infty} S_{n, N}(f ; x)=f(x) \quad \text { for all } f \in C_{A}[0, \infty) \text { and all } x \in[0, \infty)
$$

However, Grof does not investigate what happens, if the sequence $N(n) / n$ does not tend to infinity. In particular he gives no answer to the question whether we cannot do without that assumption.

In the present paper we follow a course which is a little different from the one of Grof. Now, for $f \in C_{M}[0, \infty)$ and $x \in[0, \infty)$ we define

$$
\begin{equation*}
S_{n, \delta}(f ; x):=e^{-n x} \sum_{k=0}^{[n(x+\delta)]} \frac{(n x)^{k}}{k!} f\left(\frac{k}{n}\right) \tag{3}
\end{equation*}
$$

where $C_{M}[0, \infty)$ denotes the set of all functions $f \in C[0, \infty)$ satisfying a growth-condition of the form $|f(t)| \leqslant A+B t^{2 m}\left(A, B \in \mathbb{R}^{+} ; m \in \mathbb{N}\right)$. It is our aim to prove.

ThEOREM 3. Let $\delta=\delta(n)$ be a sequence of positive numbers with $\lim _{n \rightarrow \infty} n^{1 / 2} \delta(n)=\infty$. Then $\left(S_{n, \delta}\right)_{n \in \mathbb{N}}$ is a sequence of positive linear operators from $C_{M}[0, \infty)$ in $C[0, \infty)$ with the property

$$
\lim _{n \rightarrow \infty} S_{n, \delta}(f ; x)=f(x) \quad \text { for all } f \in C_{M}[0, \infty)
$$

uniformly on every interval $\left[x_{1}, x_{2}\right], 0 \leqslant x_{1}<x_{2}<\infty$.
To prove Theorem 3 we need
Lemma 4 (cf. Rathore [5, pp. 23-25]; Lehnhoff [4]). Let $0 \leqslant x_{1}<$ $x_{2}<\infty$. Then for every $m \in \mathbb{N}$ there exists a positive constant $C\left(m, x_{1}, x_{2}\right)$ such that

$$
S_{n}\left((t-x)^{2 m} ; x\right) \leqslant \frac{C\left(m, x_{1}, x_{2}\right)}{n^{m}} \quad \text { uniformly for all } x \in\left[x_{1}, x_{2}\right] \text {. }
$$

Proof of Theorem 3. For $f \in C_{M}[0, \infty)$ constants $A, B \in \mathbb{R}^{+}$and $m \in \mathbb{N}$ exist with

$$
\begin{aligned}
|f(t)| & \leqslant A+B t^{2 m} \leqslant A+B 2^{2 m}\left\{(t-x)^{2 m}+x^{2 m}\right\} \\
& =\underbrace{\left(A+B(2 x)^{2 m}\right)}_{=: A_{x}}+B 2^{2 m}(t-x)^{2 m} .
\end{aligned}
$$

Thus it follows

$$
S_{n, \delta}(f ; x)=S_{n}(f ; x)-R_{n}(f ; x)
$$

with

$$
\begin{aligned}
\left|R_{n}(f ; x)\right| & \leqslant e^{-n x} \sum_{k=[n(x+\delta)]+1}^{\infty} \frac{(n x)^{k}}{k!}\left|f\left(\frac{k}{n}\right)\right| \\
& \leqslant e^{-n x} \sum_{k=[n(x+\delta)]+1}^{\infty} \frac{(n x)^{k}}{k!}\left\{A_{x}+B 2^{2 m}(t-x)^{2 m}\right\} \\
& \leqslant A_{x} e^{-n x} \sum_{|(k / n)-x|>\delta} \frac{(n x)^{k}}{k!}+2^{2 m} B S_{n}\left((t-x)^{2 m} ; x\right) \\
& \leqslant\left\{\delta^{-2 m}\left(A+B(2 x)^{2 m}\right)+B 2^{2 m}\right\} \frac{C\left(m, x_{1}, x_{2}\right)}{n^{m}}=o(1), \quad n \rightarrow \infty
\end{aligned}
$$

uniformly on $\left[x_{1}, x_{2}\right]$, because

$$
\lim _{n \rightarrow \infty} n^{1 / 2} \delta(n)=\infty \quad \Leftrightarrow \quad(\delta(n))^{-1}=o\left(n^{1 / 2}\right), n \rightarrow \infty
$$

The operators S_{n} and $S_{n, \delta}$ have the same approximation properties, if and only if

$$
\begin{equation*}
R_{n}(f ; x)=S_{n}(f ; x)-S_{n, \delta}(f ; x)=o(1 / n), \quad n \rightarrow \infty \tag{4}
\end{equation*}
$$

uniformly on every interval $\left[x_{1}, x_{2}\right], 0 \leqslant x_{1}<x_{2}<\infty$ for all functions $f \in C_{M}[0, \infty)$.

Suppose $f \in C_{M}[0, \infty)$, then constants $A, B \in \mathbb{R}^{+}$and $m \in \mathbb{N}, m \geqslant 2$, exist such that $|f(t)| \leqslant A+B t^{2 m}, t \geqslant 0$. Thus as in the proof of Theorem 3 we obtain

$$
\begin{equation*}
\left|R_{n}(f ; x)\right| \leqslant\left(A+B(2 x)^{2 m}\right) \delta^{-2 s} \frac{C\left(s, x_{1}, x_{2}\right)}{n^{s}}+B 2^{2 m} \frac{C\left(m, x_{1}, x_{2}\right)}{n^{m}} \tag{5}
\end{equation*}
$$

for every fixed $s \in \mathbb{N}$.
Because of (5) relation (4) holds, if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{1 / 2-1 / 2 s} \delta(n)=\infty \quad \text { for any fixed } s \in \mathbb{N} \tag{6}
\end{equation*}
$$

If $\delta(n)=n^{-\alpha}\left(\alpha<\frac{1}{2}\right)$ it is easy to verify that relation (6) is valid for every fixed $s \in \mathbb{N}, s>1 /(1-2 \alpha)$.

Now, let us take the case $\delta(n) \equiv 1$. Then for any $b>0$ one can consider the corresponding operators of the form (3)

$$
\begin{equation*}
\bar{S}_{n}(f ; x):=e^{-n x} \sum_{k=0}^{[n(x+1)]} \frac{(n x)^{k}}{k!} f\left(\frac{k}{n}\right) \tag{7}
\end{equation*}
$$

as positive linear operators from $C[0, b+1]$ in $C[0, b]$ with the convergence property

$$
\lim _{n \rightarrow \infty}\left\|\bar{S}_{n}(f ; \cdot)-f(\cdot)\right\|_{c[0, b]}=0 \quad \text { for all } f \in C[0, b+1] .
$$

Up to this point we always required δ independent of x. At the end of this paper we briefly deal with the case $\delta(x)=1-x$ and the corresponding operators

$$
\begin{equation*}
\hat{S}_{n}(f ; x):=e^{-n x} \sum_{k=0}^{n} \frac{(n x)^{k}}{k!} f\left(\frac{k}{n}\right), \quad f \in C[0,1], x \in[0,1) \tag{8}
\end{equation*}
$$

for which the following theorem holds.
Theorem 5. $\left(\hat{S}_{n}\right)_{n \in \mathbb{N}}$ is a sequence of positive linear operators from $C[0,1]$ in $C[0,1]$ with the property

$$
\lim _{n \rightarrow \infty} \hat{S}_{n}(f ; x)=f(x) \quad \text { for all } f \in C[0,1]
$$

uniformly on every compact subinterval of $[0,1)$.
Proof. Putting

$$
\begin{array}{rlrl}
f^{*}(x) & :=f(x) & \text { for } & \\
& 0 \leqslant x \leqslant 1, \\
& :=f(1) & & \text { for }
\end{array} \quad x>1, ~ \$
$$

we have

$$
\hat{S}_{n}(f ; x)=S_{n}\left(f^{*} ; x\right)-f(1) R_{n}(x)
$$

with

$$
\begin{aligned}
R_{n}(x) & =e^{-n x} \sum_{k>n} \frac{(n x)^{k}}{k!} \leqslant e^{-n x} \sum_{|(k / n)-x|>1-x} \frac{(n x)^{k}}{k!} \\
& \leqslant(1-x)^{-2 s} S_{n}\left((t-x)^{2 s} ; x\right) \\
& \leqslant \frac{C(s, 0,1)}{(1-x)^{2 s} n^{s}} \quad \text { for } \quad 0 \leqslant x<1
\end{aligned}
$$

References

1. J. Grof, A Szász Ottó-féle operátor approximácios tulajdonságairól, MTA III. Oszt. Közl. 20 (1971), 35-44.
2. J. Grof, Über Approximation durch Polynome mit Belegfunktionen, Acta Math. Acad. Sci. Hungar. 35 (1980), 109-116.
3. T. Hermann, Approximation of unbounded functions on unbounded interval, Acta Math. Acad. Sci. Hungar. 29 (1977), 393-398.
4. H. G. Lehnhoff, Local Nikolskii constants for a special class of Baskakov operators, J. Approx. Theory 33 (1981), 236-247.
5. R. K. S. Rathore, "Linear Combinations of Linear Positive Operators and Generating Relations in Special Functions," Dissertation, Indian Institute of Technology, Delhi 1973.
6. O. Szasz, Generalization of S. Bernstein's polynomials to the infinite interval, J. Res. Nat. Bur. of Standards 45 (1950), 239-245.
