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Let CA [0, 00) be the set of all functions f E C[0, 00) satisfying a growth
condition of the form If(t)1 :::;;; Aernt (A E IR +, mE IN). Then for fE CA[0,00)
and x E [0, 00) the well-known Szasz-Mirakjan-operator is defined by

(t. ).- -nx ~ (nx)k f (~)
Sn ,x .- e ..... k' .

k=O • n

It is known (Grof [1]; Hermann [3]) that

(1)

THEOREM 1. (Sn)ne N is a sequence of linear positive operators from
CA[0, 00) into C[0, 00) with the property

lim Sn(f;x)=f(x)forallfECA[O, 00),
n-oo

uniformly on every interval [XI' x 2], 0:::;;; XI < x 2 < 00.

The actual construction of the operators S n requires estimation of infinite
series which in a certain sense restricts their usefulness from the
computational point of view. Thus the question arises, whether Sn(f; x)
cannot be replaced by a finite partial sum provided this will not change
essentially the degree of convergence. In connection with this question Grof
[2] introduced and examined the operator

) -nx ~ (nx)k (k)Sn,N(f;x :=e L.. -k,-f - ,
k=O • n

for which the following result (cf. Grof [2; p. 114]) is valid.

(2)

THEOREM 2. Let N(n) be a sequence of positive integers with
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limn-->co (N(n)/n) = 00. Then (Sn,N)nEN is a sequence of linear positive
operators from CA [0,(0) in qo, (0) with the property

for all f E CA [0, (0) and all x E [0, (0).

However, Grof does not investigate what happens, if the sequence N(n)/n
does not tend to infinity. In particular he gives no answer to the question
whether we cannot do without that assumption.

In the present paper we follow a course which is a little different from the
one of Grof. Now, for fE CM[O, (0) and x E [0,(0) we define

[n(xH)] (nx)k (k
Sn,lJ(f;x) :=e-nx .L -k,-f -),

k=O . n
(3)

where CM[O, (0) denotes the set of all functions fE qo, (0) satisfying a
growth-condition of the form Ifit)1 ~ A +BtZm (A, B E IR +; m E IN). It is our
aim to prove.

THEOREM 3. Let tJ = tJ(n) be a sequence of positive numbers with
limn-->co n1/2 tJ(n) = 00. Then (Sn,lJ)nE N is a sequence of positive linear
operators from CM[O, (0) in qo, (0) with the property

lim Sn lJ(f;x)=f(x)
n--+oo '

for allfE CM[O, (0)

uniformly on every interval [xl,XZ], O~XI <xz < 00.

To prove Theorem 3 we need

LEMMA 4 (cf. Rathore [5, pp. 23-25]; Lehnhoff [4]). Let O~XI <
Xz < 00. Then for every mE IN there exists a positive constant C(m, XI' xz)
such that

S «t- )zm. )& C(m,xl,xz)
n x ,x ~ m

n
uniformlyfor all xE [Xl'Xz].

PROOF OF THEOREM 3. For fE CM[O, (0) constants A, BE IR + and
m E IN exist with

If(t)/ <; A + Bt Zm <; A + B2 Zm {(t _ x)zm + x zm }

= (A + B(2x)zm) + B 2zm (t _ x)2m.
~

=:A x

Thus it follows
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with
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-nx 00 (nx)k I (k) IIRil;x)l::;;;e L -k'- I -
k=[n(x+Il)]+I' n

00 (nx)k
::;;; e- nx L --I-{Ax +B 22m (t - X)2m}

k=[n(x+Il»)+1 k.

::;;;Axe~nx L (nxr + 22mBSn((t_X)2m;X)
I(k/n)-xi >Il k.

uniformly on [XI' x 2], because

lim n l
/

2J(n) = 00
n~oo

The operators S nand S n,1l have the same approximation properties, if and
only if

Rn(f; x) = Sn(f; x) - Sn.Il(f; x) = o(l/n), n~ 00, (4)

uniformly on every interval [XI' x 2], 0::;;; XI <x 2 < 00 for all functions
IE CM[O, (0).

Suppose IE CM[O, (0), then constants A, B E IR + and mE IN, m ~ 2, exist
such that Iftt)l::;;; A +Bt2m, t ~ O. Thus as in the proof of Theorem 3 we
obtain

for every fixed s E IN.
Because of (5) relation (4) holds, if

lim nl/2-1/2S J(n) = 00
n~oo

for any fixed s E IN. (6)

(7)

If J(n) = n - a (a <D it is easy to verify that relation (6) is valid for every
fixed s E IN, s > 1/{1 - 2a).

Now, let us take the case J(n) == 1. Then for any b >°one can consider
the corresponding operators of the form (3)

_ . ._ -nx [n(x+ I») (nx)k (k )
Sn(f;x) .-e L -k,-I-

k=O . n
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as positive linear operators from qa, b + 1] in qa, b] with the convergence
property

lim II Sn(f; . ) - f(· )llc[o,bl = a
n -+0Ci

for allfE qa, b + 1].

Up to this point we always required t5 independent of x. At the end of this
paper we briefly deal with the case t5(x) = 1 - x and the corresponding
operators

A n (nx)k (k)
Sn(f; x):= e- nx L -k,-f - ,

k=O • n

for which the following theorem holds.

fE e[o, 1],xE [0,1) (8)

THEOREM 5. (Sn)nEN is a sequence of positive linear operators from
qo, 1] in qo, 1] with the property

lim Sn(f; x) =f(x)
n-+ 0Ci

for allfE qo, 1]

uniformly on every compact subinterval of [0, 1).

Proof Putting

we have

f*(x) := f(x)

:=f(l)

for a~x ~ 1,

for x> 1,

with

(nx)k
Rn(x)=e- nx L __,_~e-nx L

k>n k. l(k/n)-xl>l-x

~ (1-X)-2S Sn((t-x)2S;x)

C(s, 0,1)
~ 2 for a~ x < 1. I(1- x) S nS

(nx)k

k!
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